.

Версия для печати

ОТКУДА БЕРЕТСЯ КИСЛОРОД

ОТКУДА БЕРЕТСЯ КИСЛОРОД

Ежегодно десятки миллиардов тонн кислорода расходуются на дыхание людей и животных, на нужды промышленности, которые все растут.

А кислорода в воздухе пока практически не становится меньше.

Считают, что зеленые растения в результате фотосинтеза выделяют почти шесть тонн кислорода на каждую тонну кислорода, израсходованную на их дыхание. Причем 80% кислорода передают в атмосферу водоросли морей и океанов, так называемый фито-планктон, и лишь 20% — наземные растения. Поэтому-то океан часто и называют легкими Земли. В фитопланктоне, составной частью которого являются сине-зеленые водоросли, протекает реакция фотосинтеза:

6CO2 + 6H2О = С6Нl2О6 + 6O2.

Из диоксида углерода СО2 и воды образуется глюкоза C6H12O6, а «нежелательный» кислород O2 выделяется в атмосферу. Энергия, необходимая для осуществления этого синтеза, передается фито-планктону солнечным светом.

 

Степин Б. Д., Аликберова Л. Ю. Книга по химии для домашнего чтения.— М.: Химия, 1994 г.— 400c.: ил.

Фотосинтез — сложный химический процесс, благодаря которому вырабатывается кислород. На производство кислорода способны только зеленые растения и некоторые виды бактерий.

Растения обладают уникальным свойством вырабатывать кислород. Из всего существующего на земле на это способны еще несколько видов бактерий. Данный процесс в науке называется фотосинтезом.

Что необходимо для фотосинтеза

Кислород вырабатывается только если есть все элементы, необходимые для фотосинтеза:
1. Растение, имеющее зеленые листья (имеющие хлорофиллы в листе).
2. Солнечная энергия.
3. Вода, содержащаяся в листовой пластине.
4. Углекислый газ.

Исследования фотосинтеза

Первым изучению растений посвятил свои исследования Ван Гельмонт. В ходе своей работы он доказал, что растения берут питание не только из почвы, но также питаются и углекислым газом. Спустя почти 3 века Фредерик Блэкман при помощи исследований доказал существование процесса фотосинтеза. Блэкман не только определил реакцию растений в ходе вырабатывания кислорода, но также и установил, что в темное время суток растения дышат кислородом, поглощая его. Определение этому процессу было дано только в 1877 году.

Как происходит выделение кислорода

Процесс фотосинтеза заключается в следующем:
На хлорофиллы попадает солнечный свет. Затем начинаются два процесса:
1. Процесс фотосистема II. При столкновении фотона с 250-400 молекулами фотосистемы II энергия начинает скачкообразно возрастать, затем эта энергия передается молекуле хлорофилла. Начинаются две реакции. Хлорофилл теряет 2 электрона, а в этот же момент расщепляется молекула воды. 2 электрона атомов водорода замещают потерянные электроны у хлорофилла. Затем молекулярные переносчики перекидывают «быстрый» электрон друг другу. Частично энергия затрачивается на образование молекул аденозинтрифосфата (АТФ).
2. Процесс фотосистема I. Молекула хлорофилла фотосистемы I поглощает энергию фотона и передает свой электрон другой молекуле.

Потерянный электрон замещается электроном из фотосистемы II. Энергия из фотосистемы I и ионы водорода уходит на образование новой молекулы-переносчика.

В упрощенном и наглядном виде всю реакцию можно описать одной простой химической формулой:
СО2 + Н2О + свет -> углевод + О2

В раскрытом виде формула выглядит так:
6CO2 + 6H2O = C6H12O6 + 6O2

Существует и темновая фаза фотосинтеза. Ее также называют метаболической. В ходе темновой стадии происходит восстановление углекислого газа до глюкозы.

Заключение

Все зеленые растения вырабатывают необходимый для жизни кислород. В зависимости от возраста растения, его физических данных, количество выделяемого кислорода может меняться. Процесс этот в 1877 году В. Пфеффером был назван фотосинтезом.

Внимание, только СЕГОДНЯ!

Уже один миллиард лет атмосфера Земли состоит в основном из азота (20–78%) и кислорода (5–21%). Современная атмосфера Земли в объемных процентах содержит: азота — 78%, кислорода — 21, углекислого газа — 0,03, аргона — 0,93, остальные 0,04% занимают гелий, метан, криптон, закись азота, водород, ксенон. Сравнительно высокий процент содержания в атмосфере аргона — 40 объясняется тем, что в недрах Земли в него превращается большое количество радиоактивного калия — 40. Современные физические параметры атмосферы следующие: толщина атмосферного слоя до 1000 километров, масса 5·1018 кг, давление у поверхности планеты 1 атмосфера.

В таблице показаны эволюционные изменения химического состава атмосферы в прошлом и в перспективе на 2 миллиарда лет вперед (в %). Рассмотрим причины этих изменений в химическом составе атмосферы Земли.


Эволюционные изменения химического состава атмосферы Земли

1. Углекислый газ CO2 появился благодаря обильным вулканическим извержениям. Нет единого мнения о его процентном составе в атмосфере 4 — 5 миллиардов лет назад. Газовый состав современных вулканических извержений содержит 40% по весу углекислого газа, а азота N2 — 2%. Однако можно предположить, что в прошлом углекислый газ имел возможность накапливаться в атмосфере до 90%. Это объясняется тем, что CO2 и N2 являются самыми инертными химическими соединениями атмосферы, и они почти не вступают в реакции c другими элементами. Остальные вулканические газы (HCl, CN, HF, SO2, NH3 и другие) относятся к крайне агрессивным компонентам, поэтому быстро «уничтожались», вступая в соединения с металлами горных пород, веществами вулканической лавы, растворенными в водах солями. Следовательно, процентное содержание углекислого газа и азота постоянно возрастало, а других газов — постепенно уменьшалось.

Становится понятным, как содержание углекислого газа в атмосфере молодой Земли могло повыситься до 90%, а содержание азота в наше время достигло 78%. Основными потребителями углекислого газа являются растения. Источниками углекислого газа являются вулканы, промышленность и процесс дыхания животных. Основными резервуарами хранения являются атмосфера и океан.

А) Основные «резервуары для хранения» углекислого газа на Земле.

1) Сейчас в атмосфере содержится 0,03% углекислого газа, что составляет 2·1015 килограмм. Одновременно с этим на Земле произрастает 1016 кг растений (по А.Виноградову), которые за год поглощают более 1014 кг углекислого газа. Тогда углекислого газа хватит только на 20 лет.

2) Крупным «резервуаром» углекислого газа являются океаны и моря, так как в их водах растворено 5·1016 кг углекислого газа. Тогда только в течение 500 лет растительный мир Земли мог бы расходовать растворенный в гидросфере углекислый газ.

Углекислый газ из атмосферы и сегодня в большом количестве растворяется в водах океанов и морей. Вызывает тревогу то, что в будущем продолжится понижение процентного содержания углекислого газа в атмосфере, а следовательно, он снизит свою концентрацию и в океане.

Б) Основные источники углекислого газа на Земле.

1) Вулканические извержения в прошлом являлись самым главным источником углекислого газа для атмосферы, а растения — единственными потребителями углекислого газа. В настоящее время все вулканы за год выделяют в атмосферу 109 кг углекислого газа, а цивилизация сжигает органические топлива, и тем самым также пополняет атмосферу углекислым газом еще на 3·1012 кг в год (т.е. в 3000 раз больше, чем вулканы). Вулканические процессы на планете постепенно затухают по мере ее «старения». Через 1 миллион лет вулканизм на Земле полностью прекратится.

2) Около 150 лет еще будет действовать дополнительный источник углекислого газа — цивилизация, которая в большом количестве сжигает ископаемые органические вещества (уголь, нефть, дрова, горючие сланцы — geoglobus.ru). Но затем эти полезные ископаемые будут исчерпаны. Залежи полезных ископаемых типа угля, нефти, природного газа цивилизация исчерпает через 150 лет, и цивилизация прекратит пополнять атмосферу углекислым газом, образующимся при сгорании органических топлив. Поэтому одни ученые полагают, что, несмотря на сжигание топлива в течение 150 лет, процентное содержание углекислого газа в атмосфере будет снижаться. Количество CO2 останется прежним (0,03%), так как он поглотится растениями и произойдет компенсационное увеличение биомассы у растений Земли. Другие ученые говорят о повышении содержания углекислого газа в атмосфере до 0,04 — 0,05% с последующим незначительным потеплением климата на планете к 2150 году. Так или иначе, но после 2150 года цивилизация останется без органического топлива и процесс глобального снижения количества углекислого газа в атмосфере продолжится.

3) Углекислый газ также выделяется в атмосферу в количестве 1010 кг в год при разложении умерших животных и погибших растений в океанах, морях и на суше. Так же углекислый газ выделяется при дыхании животных и человека из их легких.

В) «Скорость» исчезновения углекислого газа из атмосферы Земли.

Обратим внимание на то, что хотя в течение последних десятков миллионов лет «работали» все природные источники углекислого газа (вулканизм, океаны, гниение), однако содержание углекислого газа в атмосфере снижалось и, например, за время кайнозойской эры (за 70 миллионов лет) упало с 12% (перед началом кайнозойской эры) до 0,03%, то есть в 400 раз. Через 10 миллионов лет количество углекислого газа в атмосфере уменьшится в 1000 раз, процентный состав будет 0,000003%. Такое уменьшение содержания углекислого газа воздействует губительно для всех растений, что подтверждается на опытах с помещением растений под стеклянный колпак и одновременным уменьшением там содержания СО2. Растения "съели" весь углекислый газ атмосферы. Газовый источник пищи для растений почти иссяк. В ответ на это растения вынуждены будут сначала (через 100 тысяч лет) уменьшать собственную биомассу в сотни раз, а, в конце концов, все растения погибнут от отсутствия углекислого газа в атмосфере.

Углекислый газ будет полностью трансформирован растениями в кислород примерно через 30 миллионов лет. Учёные полагают, что благодаря естественному круговороту веществ углекислый газ не исчезнет из состава земной атмосферы почти 30 миллионов лет. Поэтому можно утверждать, что после 30 миллионов лет, по причине отсутствия углекислого газа в атмосфере произойдет полное вымирание растительного мира. Понятно, что одновременно с исчезновением растений произойдет гибель травоядных животных. После этого вымрут хищники, и произойдет полное исчезновение животного мира. Земля лишится всех видов жизни по двум геокосмическим причинам: исчезновение углекислого газа из атмосферы и сильного похолодания на поверхности планеты.

2. Кислород O2. Сейчас можно сформулировать один из главных законов биологической эволюции: первым видом живой материей во Вселенной являются растения, которые превращают неорганическую материю (CO2) в органическую (древесину, листья, плоды, цветы). Вторым видом живой материи во Вселенной является животный мир, который появляется на планете после насыщения океанов и атмосферы кислородом (O2) в процессе жизнедеятельности растений, а пищей для животных служат растения и другие животные.

А) Основным источником кислорода на Земле являются растения.

После 3,5 миллиардов лет, когда в океане появились первые растения (водоросли), на Земле происходил процесс насыщения кислородом атмосферы и вод океана. В обмен на поглощение углекислого газа растения выделяют в атмосферу кислород. Кислород в атмосфере появился 3 миллиарда лет назад в количестве 0,1 — 1%. Он относится к очень активным химическим веществам. Поэтому в прошлом около 1020 кг кислорода из атмосферы было потрачено на окисление атмосферных газов, растворенных в океанах и морях веществ, а также на окисление веществ горных пород на суше и на дне океанов. Весь современный растительный мир планеты в год потребляет 1014 кг углекислого газа и выделяет 3·1013 кг кислорода, что в 3,3 раза меньше массы безвозвратно поглощенного углекислого газа.

Поэтому можно сделать вывод, что в настоящее время количество кислорода в атмосфере увеличивается, а количество углекислого газа уменьшается. Если этот процесс не замедлится, то через 1500 лет в атмосфере будет 26% кислорода, через 3000 лет – 42% (в 2 раза больше, чем сейчас). Но такого большого увеличения процентного состава кислорода в атмосфере не произойдет, так как для этого недостаточно углекислого газа планеты. На поверхности Земли (в атмосфере и океанах — geoglobus.ru) находится примерно 1017 кг углекислого газа, из которого растения могут получить 3·1016 кг кислорода (3% от находящегося в атмосфере). Следовательно, максимальное количество кислорода в атмосфере может увеличиться до 24% (21% + 3%). При нынешних темпах выделения кислорода растениями, в атмосфере его будет содержаться 24% через несколько миллионов лет.

Б) Основные «резервуары и хранилищами» кислорода на Земле является атмосфера и океан.

Сейчас количество кислорода в атмосфере 21%, что составляет по весу 1018 кг. Примерно в 3 раза большая его масса растворена в водах океанов, морей, озер и рек. Рыбы дышат именно этим, растворенным в воде, кислородом.

В) Основные потребители кислорода на Земле является мантия Земли, промышленность и животные.

1) Затраты кислорода на глобальное окисление. Вода с растворенным в ней кислородом проникает глубоко в недра Земли, где кислород вступает в реакцию с еще не окисленными веществами коры и мантии. Нагретая в недрах Земли вода в виде пара поднимается на поверхность планеты, чтобы остыть и пропитаться новой порцией кислорода, а потом снова опускается в недра. Делая бесчисленные круговороты, подземная вода за год уносит в недра Земли около 1011 кг кислорода. Процесс окисления веществ в недрах планеты растворенным в воде кислородом является достаточно мощным источником его глобального потребления. Годовая потребность в кислороде для этого геохимического процесса составляет 1011 кг.

Вся масса свободного кислорода в атмосфере и океане равна примерно 3·1018 кг. Значит, кислород атмосферы и океана будет истрачен на окисление остывающих горных пород мантии и вещества ядра Земли через 30 миллионов лет после гибели всех растений на Земле (т.е. через 60 миллионов лет, считая от сегодняшнего дня). После потери кислорода атмосфера будет состоять исключительно из азота. Поэтому через 60 миллионов лет атмосферу Земли ожидает азотная стадия эволюционного развития.

2) Затраты кислорода на сжигание топлива. Ежегодно затрачивается 5·1012 кг кислорода атмосферы на сжигание цивилизацией органического топлива и в пожарах (лесные, на нефтяных скважинах и т. д.). Конечным продуктом сжигания являются углекислый газ и вода.

Органическое топливо + 3О2 = СО2 + 4Н2О.

Растения почти сразу трансформируют углекислый газ (от сжигания топлив и пожаров) опять в кислород. Безвозвратно теряется только кислород при синтезе воды во время горения органических веществ, что составляет 2·1012 кг в год.

3) Кислород атмосферы потребляется в момент дыхания животных и людей в количестве около 109 кг в год. Выдыхается из легких животных и человека углекислый газ, который быстро трансформируется растениями опять в кислород.

4) Вывод о темпах глобального поглощения кислорода. Если суммировать массу поглощенного кислорода из атмосферы и массу растворенного кислорода в океанах, то получится величина около 6·1012 кг в год. При этом необходимо учитывать, что необратимо (безвозвратно) масса кислорода поглощается в количестве 3·1012 кг в год, а остальная его масса образует углекислый газ и вступает в круговорот.

3. Азот N2, которого сейчас в атмосфере 78% (или около 4·1018 кг), образовался по двум причинам. Азот выделяется в атмосферу в течение 5 миллиардов лет благодаря вулканическим процессам. Вулканические газы содержат от 0,1 до 2% азота. Газообразный азот обладает низкой химической активностью, поэтому он постоянно накапливается в атмосфере Земли. В водах океанов и морей растворено азота в 5 раз больше, чем в атмосфере – 20·1018 кг. Всего на поверхности Земли содержится 24·1018 кг свободного азота. Кроме вулканического происхождения существуют другие механизмы поступления азота в атмосферу.

Азот поступал в атмосферу при процессе окисления аммиака. Академик А.Виноградов отстаивает именно эту гипотезу возникновения азота в атмосфере Земли. По приблизительным расчетам, с 5 до 2 миллиарда лет назад в атмосфере Земли содержалось от 5 до 20% аммиака. Начиная с момента, когда растения начали выделять в атмосферу кислород, возник глобальный процесс окисления аммиака с образованием азота.

2NH4 + 2O2 = N2 + 4H2O.

Азот, в отличие от углекислого газа и кислорода, не участвует в глобальных биохимических процессах. Его усваивают в незначительных количествах в год некоторые виды азотобактерий в почве и илистом дне водоемов. Азот внутри бактериальных клеток превращается в аммиак, цианистые соединения, окись и закись азота. Биологами подсчитано, что за год атмосфера безвозвратно теряет на микробиологические процессы 1011 кг азота. Тогда весь свободный азот Земли будет усвоен бактериями через 240 миллионов лет.

Рубрики: Путешествия

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *